Skip to content

BaseAI ​

Overview ​

BaseAI - Intelligent text generation, analysis, and processing capabilities. Transform your applications with content creation, sentiment analysis, categorization, entity extraction, translation, and vectorization.

Operations ​

An operation is an AI-powered action performed on text. All operations require the op property to specify which operation to perform.

OperationDescription
baseai.writeGenerate new content from prompts
baseai.summarizeCreate concise summaries
baseai.translateTranslate between languages
baseai.categorizeClassify content into categories
baseai.extract_entitiesExtract entities and information
baseai.analyze_sentimentAnalyze emotional tone
baseai.vectorize_contentConvert document to vector embeddings

Create Content ​

baseai.write ​

Generate new content based on prompts with customizable style and length.

Basic generation:

json
{
  "op": "baseai.write",
  "prompt": "Write a blog post about cloud computing benefits for small businesses",
  "content_length": 800,
  "content_style": "professional"
}

With custom instructions:

json
{
  "op": "baseai.write",
  "prompt": "Create social media posts for a fitness app launch",
  "content_length": 500,
  "content_style": "engaging",
  "custom_instructions": "Create 5 posts for Instagram and Twitter. Include hashtags and call-to-action."
}

Parameters:

  • prompt (required) - Text or instruction for generation
  • content_length (optional) - Target word count
  • content_style (optional) - Writing style: formal, casual, professional, technical, narrative
  • custom_instructions (optional) - Specific requirements

Response:

json
{
  "data": "# Cloud Computing: A Game-Changer for Small Businesses\n\nIn today's competitive landscape, small businesses need every advantage...",
  "meta": {
    "content_length": 847,
    "generation_time_ms": 2340,
    "style_applied": "professional"
  }
}

Summarize Content ​

baseai.summarize ​

Create concise summaries of long-form content.

json
{
  "op": "baseai.summarize",
  "content": "Artificial intelligence has been transforming industries across the globe at an unprecedented pace. From healthcare to finance, manufacturing to retail, AI technologies are revolutionizing how businesses operate...",
  "content_length": 150,
  "content_style": "executive"
}

Parameters:

  • content (required) - Text to summarize
  • content_length (optional) - Target summary length
  • content_style (optional) - Summary style: executive, bullet-points, academic, news-brief
  • custom_instructions (optional) - Focus areas

Response:

json
{
  "data": "AI is revolutionizing industries globally through real-time data processing. Key applications include personalized medicine and fraud detection, demonstrating transformative impact across healthcare and finance.",
  "meta": {
    "original_length": 2847,
    "summary_length": 147,
    "compression_ratio": 0.052
  }
}

Categorize Content ​

baseai.categorize ​

Classify content into categories with confidence scoring.

json
{
  "op": "baseai.categorize",
  "content": "I'm disappointed with my purchase. The product arrived damaged and customer service was unhelpful. I'm considering switching to a competitor.",
  "classification_categories": "positive, negative, neutral, urgent, complaint, inquiry",
  "confidence_level": "high"
}

Parameters:

  • content (required) - Text to classify
  • classification_categories (optional) - Comma-separated list of categories
  • confidence_level (optional) - Minimum confidence: low, medium, high

Response:

json
{
  "data": {
      "primary_classification": "complaint",
      "secondary_classifications": ["negative", "urgent"],
      "confidence_scores": {
        "complaint": 0.92,
        "negative": 0.89,
        "urgent": 0.76,
        "neutral": 0.08,
        "positive": 0.03
      },
      "reasoning": "Content expresses dissatisfaction with product and service, indicating urgent complaint."
  },
  "meta": {
    "classification_method": "multi-label",
    "confidence_threshold": 0.7
  }
}

Common use cases:

  • Customer support ticket routing
  • Content moderation
  • Document organization
  • Email filtering

Analyze Sentiment ​

baseai.analyze_sentiment ​

Analyze emotional tone and sentiment of text.

json
{
  "op": "baseai.analyze_sentiment",
  "content": "The new product launch exceeded expectations! While there were supply chain challenges, we overcame them. Customer feedback has been overwhelmingly positive.",
  "analysis_depth": "detailed",
  "specific_aspects": "product quality, team performance, customer satisfaction"
}

Parameters:

  • content (required) - Text to analyze
  • analysis_depth (optional) - Detail level: brief, standard, detailed
  • specific_aspects (optional) - Comma-separated aspects to focus on

Response:

json
{
  "data": {
      "overall_sentiment": "positive",
      "sentiment_score": 0.78,
      "emotional_indicators": {
        "excitement": 0.85,
        "satisfaction": 0.82,
        "concern": 0.23,
        "confidence": 0.76
      },
      "aspect_sentiments": {
        "product quality": {
          "sentiment": "very positive",
          "score": 0.91
        },
        "team performance": {
          "sentiment": "positive",
          "score": 0.87
        },
        "customer satisfaction": {
          "sentiment": "positive",
          "score": 0.83
        }
      },
      "key_phrases": ["exceeded expectations", "overwhelmingly positive"],
      "tone_analysis": "optimistic and professional with acknowledgment of improvements"
  },
  "meta": {
    "analysis_confidence": 0.94
  }
}

Common use cases:

  • Product review analysis
  • Social media monitoring
  • Employee feedback analysis
  • Customer support quality

Extract Entities ​

baseai.extract_entities ​

Extract specific entities and structured information from text.

json
{
  "op": "baseai.extract_entities",
  "content": "John Smith, CEO of TechCorp Inc., announced the company will open a new headquarters in San Francisco. The $50 million facility will create 500 jobs by December 2024. Contact: john.smith@techcorp.com, (555) 123-4567.",
  "entity_types": "people, organizations, locations, dates, contact_info, financial_amounts"
}

Parameters:

  • content (required) - Text to analyze
  • entity_types (optional) - Comma-separated entity types to extract

Response:

json
{
  "data": {
      "people": [
        {
          "name": "John Smith",
          "title": "CEO",
          "organization": "TechCorp Inc."
        }
      ],
      "organizations": [
        {
          "name": "TechCorp Inc.",
          "type": "company"
        }
      ],
      "locations": [
        {
          "city": "San Francisco",
          "type": "headquarters_location"
        }
      ],
      "dates": [
        {
          "date": "December 2024",
          "context": "job creation deadline"
        }
      ],
      "contact_info": [
        {
          "email": "john.smith@techcorp.com",
          "phone": "(555) 123-4567"
        }
      ],
      "financial_amounts": [
        {
          "amount": "$50 million",
          "context": "facility cost"
        }
      ]
  },
  "meta": {
    "entities_found": 6,
    "extraction_confidence": 0.96
  }
}

Common entity types:

  • people - Names, titles, roles
  • organizations - Companies, institutions
  • locations - Cities, countries, addresses
  • dates - Dates, times, deadlines
  • contact_info - Emails, phones
  • financial_amounts - Money, prices
  • skills - Technical skills, expertise
  • events - Meetings, conferences

Common use cases:

  • Contract analysis
  • Resume parsing
  • News analysis
  • Invoice processing

Translate Content ​

baseai.translate ​

Translate text between languages with style preservation.

json
{
  "op": "baseai.translate",
  "content": "We are excited to announce the launch of our new product line. For more information, visit our website.",
  "anguage": "Spanish",
  "translation_style": "business-formal"
}

Parameters:

  • content (required) - Text to translate
  • language (required) - Target language
  • translation_style (optional) - Style: formal, casual, technical, marketing

Response:

json
{
  "data":  "Nos complace anunciar el lanzamiento de nuestra nueva línea de productos. Para obtener más información, visite nuestro sitio web.",
  "meta": {
    "language": "Spanish",
    "translation_confidence": 0.98,
    "style_applied": "business-formal"
  }
}

Supported languages: English, Spanish, French, German, Japanese, Chinese, Portuguese, Italian, Russian, Korean, Arabic, Dutch, Polish


Vectorize Content ​

baseai.vectorize_content ​

Convert text to vector embeddings for semantic search and similarity analysis.

json
{
  "op": "baseai.vectorize_content",
  "content": "Machine learning algorithms identify patterns in data and make predictions."
}

Parameters:

  • content (required) - Text to convert to vectors

Response:

json
{
  "data": {
      "vector": [0.0234, -0.1567, 0.2891, 0.0945, -0.3421, ...],
      "dimensions": 1536,
      "model_version": "text-embedding-v2.0"
  },
  "meta": {
    "content_length": 119,
    "vector_norm": 1.0
  }
}

Common use cases:

  • Semantic search
  • Content recommendation
  • Similarity detection
  • Document clustering

Complete Example ​

javascript
// 1. Generate content
const createResponse = await fetch('https://cloud.singlebaseapis.com/api/<ENDPOINT_KEY>', {
  method: 'POST',
  headers: {
    'Content-Type': 'application/json',
    'X-API-KEY': 'your_api_key',
    'Authorization': 'Bearer your_jwt_token'
  },
  body: JSON.stringify({
    op: 'baseai.write',
    prompt: 'Write a product description for wireless headphones',
    content_length: 200,
    content_style: 'marketing'
  })
});

const content = await createResponse.json();
console.log('Generated:', content.data);

// 2. Analyze sentiment
const sentimentResponse = await fetch('https://cloud.singlebaseapis.com/api/<ENDPOINT_KEY>', {
  method: 'POST',
  headers: {
    'Content-Type': 'application/json',
    'X-API-KEY': 'your_api_key',
    'Authorization': 'Bearer your_jwt_token'
  },
  body: JSON.stringify({
    op: 'baseai.analyze_sentiment',
    content: 'The product quality is excellent but delivery was slow.',
    analysis_depth: 'detailed',
    specific_aspects: 'product quality, delivery'
  })
});

const sentiment = await sentimentResponse.json();
console.log('Overall:', sentiment.data.output.overall_sentiment);
console.log('Aspects:', sentiment.data.output.aspect_sentiments);

// 3. Categorize content
const categorizeResponse = await fetch('https://cloud.singlebaseapis.com/api/<ENDPOINT_KEY>', {
  method: 'POST',
  headers: {
    'Content-Type': 'application/json',
    'X-API-KEY': 'your_api_key',
    'Authorization': 'Bearer your_jwt_token'
  },
  body: JSON.stringify({
    op: 'baseai.categorize',
    content: 'How do I reset my password?',
    classification_categories: 'technical, billing, account, general'
  })
});

const category = await categorizeResponse.json();
console.log('Category:', category.data.output.primary_classification);

// 4. Extract entities
const extractResponse = await fetch('https://cloud.singlebaseapis.com/api/<ENDPOINT_KEY>', {
  method: 'POST',
  headers: {
    'Content-Type': 'application/json',
    'X-API-KEY': 'your_api_key',
    'Authorization': 'Bearer your_jwt_token'
  },
  body: JSON.stringify({
    op: 'baseai.extract_entities',
    content: 'Contact Jane Doe at jane@example.com or call (555) 123-4567.',
    entity_types: 'people, contact_info'
  })
});

const entities = await extractResponse.json();
console.log('People:', entities.data.output.people);
console.log('Contacts:', entities.data.output.contact_info);

Common Workflows ​

Customer Support Automation ​

javascript
// Categorize and route support ticket
const ticket = "I can't login to my account";

const category = await fetch('https://cloud.singlebaseapis.com/api/<ENDPOINT_KEY>', {
  method: 'POST',
  headers: {
    'Content-Type': 'application/json',
    'X-API-KEY': 'your_api_key',
    'Authorization': 'Bearer your_jwt_token'
  },
  body: JSON.stringify({
    op: 'baseai.categorize',
    content: ticket,
    classification_categories: 'technical, billing, account, general'
  })
});

// Route based on category
const result = await category.json();
routeToTeam(result.data.primary_classification);

Content Analysis Pipeline ​

javascript
async function analyzeContent(text) {
  // Summarize
  const summary = await summarize(text);
  
  // Analyze sentiment
  const sentiment = await analyzeSentiment(text);
  
  // Categorize
  const category = await categorize(text);
  
  return {
    summary: summary.data,
    sentiment: sentiment.data.overall_sentiment,
    category: category.data.primary_classification
  };
}

Error Handling ​

json
{
  "error": {
    "code": "ERROR_CODE",
    "message": "Human-readable error description"
  }
}

Common error codes:

  • CONTENT_TOO_LONG - Content exceeds max length (50,000 chars)
  • CONTENT_EMPTY - No content provided
  • INVALID_LANGUAGE - Unsupported language
  • PROCESSING_FAILED - AI processing error (retry recommended)
  • QUOTA_EXCEEDED - API usage limit reached
  • INVALID_OPTIONS - Malformed parameters